Covid-19 Detection

We all are aware of the pandemic situation created by the outbreak of novel corona virus and the large of number of deaths it has caused worldwide. We are also aware that the cough sound of the covid positive patients is different from that of the normal patients or patients affected by any other disease.So, with the help of AI we can develop a deep learning model which help us in classifying covid positive patients from normal patients.

Photo by Hilmy Fawwazy on Dribbble

Table of Content

  • Introduction to cAInvas
  • Source of Data
  • Data Visualization and Analysis
  • Trainset-TestSet Creation
  • Model Training
  • Introduction to DeepC
  • Compilation with DeepC

Introduction to cAInvas

cAInvas is an integrated development platform to create intelligent edge devices.Not only we can train our deep learning model using Tensorflow,Keras or Pytorch, we can also compile our model with its edge compiler called DeepC to deploy our working model on edge devices for production.The Covid-19 Detection model is also developed on cAInvas and all the dependencies which you will be needing for this project are also pre-installed.

cAInvas also offers various other deep learning notebooks in its gallery which one can use for reference or to gain insight about deep learning.It also has GPU support and which makes it the best in its kind.

Source of Data

While working on cAInvas one of its key features is UseCases gallery. Since the Covid-19 Detection model is also a part of cAInvas gallry now we don’t have to look for data manually.As they have the feature to import the dataset to your workspace when you work on them.To load the data we just have to enter the following commands:

https://gist.github.com/Gunjan933/e4a338fd9117f9cf54b7fd53a474a1aa

Running the above command will load the labelled data in your workspace which you will use for model training.

Data Visualization and Data Analysis

The dataset which we have loaded into our workspace is already pre-processed and the cough sounds have already been converted into spectogram images. To know what kind of data we are dealing with we can visualize the data by executing the folllowing commands:

https://gist.github.com/Gunjan933/cc62db4124584ab57e7e860f1db25449

And the spectogram image look like this:

TrainSet-TestSet Creation

Next we will create the train and test dataset for training our deep learning model.For this we will use ImageDataGenerator Module from the Keras Image Preprocessing Library.This will load the images along with their labels for us in a format which is recognizable by Keras for the training process.We simply have to create the train_generator and test_generator and and then when we run them they will create the dataset for us.The following commands will give you an idea on how to create the train dataset and then you will be able to create the testset on your own.

https://gist.github.com/Gunjan933/8dfe8c1160d97cb9038700c3b27cf05e

Model Training

After creating the dataset next step is to pass our training data for our Deep Learning model to learn to identify or classify different classes of images.The model architecture used was:

Model: "functional_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 224, 224, 3)] 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
_________________________________________________________________
average_pooling2d (AveragePo (None, 3, 3, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 4608) 0
_________________________________________________________________
dense (Dense) (None, 128) 589952
_________________________________________________________________
dropout (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 258
=================================================================
Total params: 15,304,898
Trainable params: 590,210
Non-trainable params: 14,714,688
_________________________________________________________________

We have used a VGG-16 pretrained model and have applied transfer learning.We have modified the last dense layer of the VGG model according to our needs.We will not train the entire VGG model but only certain layers which we have added to our pre-existing model.

The loss function used was “binary_crossentropy” and optimizer used was “Adam”.For training the model we used Keras API with tensorflow at backend. The model showed good performance achieving a decent accuracy.Here are the training plots for the model:

Introduction to DeepC

DeepC Compiler and inference framework is designed to enable and perform deep learning neural networks by focussing on features of small form-factor devices like micro-controllers, eFPGAs, cpus and other embedded devices like raspberry-pi, odroid, arduino, SparkFun Edge, risc-V, mobile phones, x86 and arm laptops among others.

DeepC also offers ahead of time compiler producing optimized executable based on LLVM compiler tool chain specialized for deep neural networks with ONNX as front end.

Compilation with DeepC

After training the model, it was saved in an H5 format using Keras as it easily stores the weights and model configuration in a single file.

After saving the file in H5 format we can easily compile our model using DeepC compiler which comes as a part of cAInvas platform so that it converts our saved model to a format which can be easily deployed to edge devices.And all this can be done very easily using a simple command.

https://gist.github.com/Gunjan933/bfd776bf8cf1b5bf7b1d6dd26f7bc93c

And that’s it, our Covid-19 Detection model is set to be deployed on edge devices.

Link for the cAInvas Notebook : https://cainvas.ai-tech.systems/use-cases/covid-19-detection-app/

Credit : Ashish Arya